10 research outputs found

    2010 JPC Abstract: Ares I First Stage Propulsion System Status

    Get PDF
    In November 2005, NASA created the Constellation Program to develop an entirely new fleet of spacecraft to include the Ares I Crew Launch Vehicle and Ares V Cargo Launch vehicles. This mission architecture included the Orion capsule (which would be used to transport astronauts to low-Earth orbit and beyond), the Altair lunar lander, and an Earth departure stage. The Ares First Stage Team has made significant progress on the design of a propulsion system to meet the objectives of the Constellation Program. Work on a first stage element propulsion system capable of lofting a new fleet of spacecraft is well underway. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle served as a starting point in the design of a new motor that would meet the requirements of those new vehicles. This new propulsive element will provide greater total impulse utilizing a fifth segment to loft a safer, more powerful fleet of space flight vehicles. Performance requirements, basic architecture, and obsolescence issues were all factors in determining the new first stage element design and configuration. Early efforts focused on creating designs that would be capable of supporting the requisite loads and environments. While the motor casings are Shuttle legacy, because of Ares I s unique in-line configuration, the first stage will require entirely new forward structures (forward skirt, forward skirt extension, aeroshell, and frustum) and a modified systems tunnel. The use of composites facilitated a change in the geometry, which in turn afforded the ability to focus strength where it was needed without additional mass. The Ares First Stage rocket motor casting tooling was designed and built to achieve a propellant grain geometry that produces the specific required ballistic profile. The new propellant formulation is a polybutadiene acrylonitrile (PBAN) copolymer, which has been modified to attain the desired burn rate and retain adequate tailoring capability

    Progress on Ares First Stage Propulsion

    Get PDF
    The mission of the National Aeronautics and Space Administration (NASA) is not simply to maintain its current position with the International Space Station and other space exploration endeavors, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains. The Constellation Program will oversee the development of the crew capsule, launch vehicles, and other systems needed to achieve this mission. From this initiative will come two new launch vehicles: the Ares I and Ares V. The Ares I will be a human-rated vehicle, which will be used for crew transport; the Ares V, a cargo transport vehicle, will be the largest launch vehicle ever built. The Ares Projects team at Marshall Space Flight Center (MSFC) in Huntsville, Alabama is assigned with developing these two new vehicles. The Ares I vehicle will have an in-line, two-stage rocket configuration. The first stage will provide the thrust or propulsion component for the Ares rocket systems through the first two minutes of the mission. The First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low-Earth orbit. Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle-derived reusable solid rocket motor. Progress to date by the First Stage Team has been robust and on schedule. This paper provides an update on the design and development of the Ares First Stage Propulsion system

    Ares I First Stage: Powering Exploration

    Get PDF
    he mission of the National Aeronautics and Space Administration (NASA) is not simply to maintain its current position with the International Space Station and other space exploration endeavors, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains. The Constellation Program will oversee the development of the crew capsule, launch vehicles, and other systems needed to achieve this mission. From this initiative will come two new launch vehicles: the Ares I and Ares V. The Ares I will be a human-rated vehicle, which will be used for crew transport; the Ares V, a cargo transport vehicle, will be the largest launch vehicle ever built. The Ares Projects team at Marshall Space Flight Center (MSFC) in Huntsville, Alabama is assigned with developing these two new vehicles. The Ares I vehicle will have an in-line, two-stage rocket configuration. The first stage will provide the thrust or propulsion component for the Ares rocket systems through the first two minutes of the mission. The First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low-Earth orbit. Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle-derived reusable solid rocket motor. Progress to date by the First Stage Team has been robust and on schedule. This presentation provides an overview and update on the design and development of the Ares I First Stage Propulsion system

    Reusability Studies for Ares I and Ares V Propulsion

    Get PDF
    With a mission to continue to support the goals of the International Space Station (ISS) and explore beyond Earth orbit, the United States National Aeronautics and Space Administration (NASA) is in the process of launching an entirely new space exploration initiative, the Constellation Program. Even as the Space Shuttle moves toward its final voyage, Constellation is building from nearly half a century of NASA spaceflight experience, and technological advances, including the legacy of Shuttle and earlier programs such as Apollo and the Saturn V rocket. Out of Constellation will come two new launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. With the initial goal to seamlessly continue where the Space Shuttle leaves off, Ares will firstly service the Space Station. Ultimately, however, the intent is to push further: to establish an outpost on the Moon, and then to explore other destinations. With significant experience and a strong foundation in aerospace, NASA is now progressing toward the final design of the First Stage propulsion system for the Ares I. The new launch vehicle design will considerably increase safety and reliability, reduce the cost of accessing space, and provide a viable growth path for human space exploration. To achieve these goals, NASA is taking advantage of Space Shuttle hardware, safety, reliability, and experience. With efforts to minimize technical risk and life-cycle costs, the First Stage office is again pulling from NASA s strong legacy in aerospace exploration and development, most specifically the Space Shuttle Program. Trade studies have been conducted to evaluate life-cycle costs, expendability, and risk reduction. While many first stage features have already been determined, these trade studies are helping to resolve the operational requisites and configuration of the first stage element. This paper first presents an overview of the Ares missions and the genesis of the Ares vehicle design. It then looks at one of the most important trade studies to date, the "Ares I First Stage Expendability Trade Study." The purpose of this study was to determine the utility of flying the first stage as an expendable booster rather than making it reusable. To lower the study complexity, four operational scenarios (or cases) were defined. This assessment then included an evaluation of the development, reliability, performance, and transition impacts associated with an expendable solution. This paper looks at these scenarios from the perspectives of cost, reliability, and performance

    Developing Primary Propulsion for the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    Get PDF
    In accordance with the U.S. Vision for Space Exploration, NASA has been tasked to send human beings to the moon, Mars, and beyond. The first stage of NASA's new Ares I crew launch vehicle (Figure 1), which will loft the Orion crew exploration vehicle into low-Earth orbit early next decade, will consist of a Space Shuttle-derived five-segment Reusable Solid Rocket Booster (RSRB); a pair of similar RSRBs also will be used on the Ares V cargo launch vehicle's core stage propulsion system. This paper will discuss the basis for choosing this particular propulsion system; describe the activities the Exploration Launch Projects (ELP) Office is engaged in at present to develop the first stage; and offer a preview of future development activities related to the first Ares l integrated test flight, which is planned for 2009

    NASA Propulsion Investments for Exploration and Science

    Get PDF
    The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science

    Progress on Ares First Stage Propulsion

    Get PDF
    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the first stage propulsion system for the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Ares I and Ares V will provide the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As primary propulsion for both the Ares I and Ares V, the Space Shuttle-derived Reusable Solid Rocket Motor (RSRM) is one of the first and most important components to be tested. The first flight of Ares I, called Ares I-X, will occur in April 2009. The Ares I-X flight will use a combination of flight and simulation hardware to obtain data on controlling the long and narrow crew launch vehicle configuration

    Propulsion Progress for NASA's Space Launch System

    Get PDF
    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions

    Ares I First Stage Propulsion System Status

    No full text
    With the retirement of the Space Shuttle inevitable, the US is faced with the need to loft a reliable cost-effective, technologically viable solution to bring the nation s fleet of spacecraft back up to industry standard. It must not only support the International Space Station (ISS), it must also be capable of supporting human exploration beyond low Earth orbit (LEO). NASA created the Constellation Program to develop a new fleet including the launch vehicles, the spacecraft, and the mission architecture to meet those objectives. The Ares First Stage Team is tasked with developing a propulsion system capable of safely, dependably and repeatedly lofting that new fleet. To minimize technical risks and development costs, the Solid Rocket Boosters (SRBs) of Shuttle were used as a starting point in the design and production of a new first stage element. While the first stage will provide the foundation, the structural backbone, power, and control for launch, the new propulsive element will also provide a greater total impulse to loft a safer, more powerful, fleet of space flight vehicles. Substantial design and system upgrades were required to meet the mass and trajectory requisites of the new fleet. Noteworthy innovations and design features include new forward structures, new propellant grain geometry, a new internal insulation system, and a state-of-the art avionics system. Additional advances were in materials and composite structures development, case bond liners, and thermal protection systems. Significant progress has been made in the design, development and testing of the propulsion and avionics systems for the new first stage element. Challenges, such as those anticipated with thrust oscillation, have been better characterized, and are being effectively mitigated. The test firing of the first development motor (DM-1) was a success that validated much of the engineering development to date. Substantive data has been collected and analyzed, allowing the Ares First Stage team to move forward, fine-tune the design, and advance to production of the second development motor (DM-2), which is now in fabrication. This paper will provide an overview of the design, development, challenges, and progress on the production of the new Ares First Stage propulsion syste

    Ares I and Ares V First Stage - Powering Exploration

    No full text
    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the first stage propulsion system for the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Ares I and Ares V will provide the space launch capabilities needed to fulfill NASA' s exploration strategy of sending human beings to the Moon, Mars, and beyond. As primary propulsion for the Ares launch vehicles, the Space Shuttle-derived Reusable Solid Rocket Motor (RSRM) is one of the first and most important components to be tested. The first flight of Ares I, called Ares I-X, will occur in April 2009, with booster integration to begin at Kennedy Space Center (KSC) by autumn 2008. The Ares I-X flight will use a combination of flight and simulation hardware to obtain data on controlling the long and narrow crew launch vehicle configuration. The test will use a four-segment RSRM from the Shuttle inventory and a fifth spacer segment to simulate the size and weight of the operational five-segment motor to be used on later flights. The upper stage, Orion crew exploration vehicle, and launch abort system will all be replaced with simulator hardware. Manufacturing work has begun on the spacer segment, as well as the new forward hardware for the booster. Atlas V avionics will be adapted to control Ares I-X' s first stage. That hardware is undergoing hardware-in-the-loop testing in a contractor-provided systems integration laboratory (SIL); a critical design review (CDR) was completed in December 2007. Drogue and main parachute drop tests have also been conducted successfully at Yuma Proving Grounds, allowing the First Stage team to begin fabricating parachutes for Ares I-X. The Ares I-X flight test will be the first flight test for the parachutes. A series of preliminary design technical interchange meetings is being conducted prior to the Ares I-X CDR in January 2007 to ensure readiness for the flight. Much of the First Stage activity in 2007 has focused on a series of preliminary design (PDR) activities associated with each booster subsystem. These events will culminate in a formal preliminary design review in 2008, where subsystems and component specifications will be developed and associated analyses and drawings will be evaluated for technical adequacy. The first stage also has been undergoing a series of trade studies to determine means for upgrading booster performance and reducing operational costs. Performance improvement studies have included changing from polybutadiene acrylonitrile (PBAN) propellant to hydroxyl-terminated polybutadiene (HTPB); replacing aluminum with composite motor casings; and optimizing or upgrading the propellant grain and nozzle structures. Some or all of these changes could result in a block upgrade to the Ares I first stage, after becoming the standard configuration for the Ares V. The cost reduction studies included a change from reusable or recoverable boosters to completely expendable boosters; changing from hydrazine-powered to more environmentally friendly electrohydrostatic actuators (EHAs) on the thrust vector control (TVC) system; and changing the location of the separation plane to reduce the likelihood of recontact upon booster separation. The expendability trade study resulted in a decision to keep the recoverable boosters, as the new hardware costs significantly outweighed the potential operational cost savings due to reduced ground operations. Likewise, due to cost considerations, the team continued using existing hydrazine-powered actuators for the TVC system. The separation plane location for Ares I is still being studied, with results to be announced in 2008. In short, the Ares launch vehicles' first stage is building upon NASA's close familiarity with this Shuttle-derived system, while continuing to seek out improvements for long-term exploration
    corecore